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'ON A CONVOLUTION EQUATION AND ITS APPLICA-

TIONS TO CHARACTERIZATION PROBLEMS

Ka-Sing Lau and WeL-BiN ZeENG
University of Pittsburgh and University of Louisville:

Recently the integrated Cauchy functional equation
. :
f(x)= f fx+»)do(»), ¥ x=20,
H .

and its applications to characterization problems have been under intensive
_investigation. We extend the discussions from the domain R, = [0, 0] to a
locally compact semigroup S, and characterize the nonnegative solutions f by
the extreme point method. The special case with § = R_2|_ , and its applications
to the randomized lack of memory property and generalized stable laws are

discussed.

1. INTRODUCTION

) 'Many problems in characterizations of pfobability distributions can be
reduced to solving the integrated Cauchy functional equation (ICFE (¢))

on [0, o0)
@)= [fx+ 0 do). v 230, (1.1)
J :
where ¢ is a given positive Borel measure on R, = [0, o©0). (see e.g. [s],
[9D. Any nonnegative locally integrable solution f of the above ICFE

(6) is shown to be of the form f(x) = p(x)e™>*, where p is a periodic
function with every y & supp o as period, and o satisfies

f emex do(x) = 1.
0
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A real-variable proof of the above was given by Lau and Rao [5] in 1982,
free of all superfluous (previous) assumptions, and later simplified by

Ramachandran [8]. ,
The ICFE(o) is closely related to the Choquet-Deny convolution equa-

tion | | o
L= ff(x —Ndo(y), ¥ xe&G, . (1.2)
: G

where G is a locally compact abelian group. The bounded solutions to the
equation (1.2) with ¢ a probability measure were characterized by Choquet
and Deny [1], and found applications in renewal theory. Using the extreme
point method (the Choquet theorem), Deny [3] derived an integral repre-
sentation for nonnegative (possibly unbounded) solutions f of the equation
(1.2): '

@ = [ s ap(),

, E(o) o
where - E(c) is the set of scalar multiples of exponential functions g on G
with

f g(—y) do(y) =1,
and Pis a probability measure on E(c).

It is natural to attempt to extend (1.1) to semigroups. Here we consider ‘

the ICFE(c) on a semigroup S:
1) = [fixt ) do, v xes, s
J v

Davies and Shanbhag [2] proved by martingale arguments an extension of
Deny’s theorem when S is a suitable subsemigroup of a separable, metriza-
ble, locally compact abelian group. They also pointed out by an example
that the solutions to the equation (1.3) are more complicated, and that the
proof of Deny in [3] does not generalize automatically.

In this note, we obtain in our main theorems an integral representation
of the general nonnegative solutions f of the ICFE(s) (1.3) on locally com-
pact semigroups. The approach is by introducing a ‘““‘skew” convolution
and applying the Choquet theorem as in Deny [3]. Our main theorems are
illustrated by several examples on R? . Applications to bivariate characteri-
zation problems such as randomized lack of memory property and genera-
lized stable laws are also discussed. The proofs will appear in [4] and [7].

2. THE THEOREMS

For simplicity we let S be a subsemigroup of a separable, metrizable,

%)
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locally compact abelian group G, and let S have nonvoid interior.S? (the
more-general case can be found in [6] and [7]). Then there is a translation
invariant measure o on S. ‘
A function g : S — R is called exponential if g 0 is a continuous
function, and g(x + y) = g(x)g(y) for all x,y € S. Leto be a Borel
measure on S. An exponential function g is said to be o-harmonic if g
satisfies ‘~

[ 20 de) = 1.
Let E(c) denote the set of all Ag, where A > 0 and gis a c-harmonic ex-
ponential function on S. Also let -
Ey(0) = {g € E(c) :8(x) > 0 for some x & S

The main theorems are:

THEOREM 2.1. If S = S(o), the closed subvsem'igroup generated by the
support of ¢, and if f = 0 is a w-locally-integrable solution of the ICFE(q)
(1.3), then for each y & 59, ' L

f+n= [ e0e()ar@), [olac. onss,
Ey(o) :
where P is a probability measure on Ey(o).
If further S9 = S, and fis continuous, then for all x & S,

70— | g0 dpe). @.1)

Ey(o) N o ' oo

- Unlike in the group case, the condition & = S(o) is too restrictive on g

for most of the applications. We introduce what we call the component-
generating property and obtain:

THEOREM 2.2, Suppose S(s) = S, and S(o) satisfies the condition that
for each open and closed subsemigroup 7 in S(s), (S(c) — T)-N S is dense
in § (which is called the component generating property of S). Then any
nonnegative continuous solution f of the ICFE(s) (1.3) admits the integral
representation (2.1). : v

The following is also useful in reducing the problem to a simpler one.’

PRrOPOSITION 2.3. Let S be a subsemigroup of S. Suppose S(e) C 5,
and there exists D C S such that {s+ S':s& D} is a family of disjoint
sets whose union is §; then the solution f'to the ICFE(s) (1.3) is of the
form ' : L

Ss+x)=ps)g(x), seD,xes,
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where g satisfies

g(x) = J glx+ 2 de(y), ¥ x5
S'
The proofs of the main theorems (in a more comprehensive setting) are
'by the extreme point method, (see [7] for details). We illustrate the
theorems by some examples.

EXAMPLE 2.4. Let S = R, then the solution £ of (1.1) mentioned in
the introduction can be deduced by letting T = S(o),
S = (R \{0) N (T — T)-
If T is nonarithmetic, apply Theorem 2.2 to S’; otherwise apply Theorem
2.2 and Proposition 2.3 together to S".

ExaMpLE 2.5. Let S = R2. If S(c) has the component-generating pro-
perty, then Theorem 2.2 implies that any locally integrable solution f of
the ICFE(o) (1.3) is given by

f(x,‘y) =J exp (—(ax + By)) d’;(oc, B), [w]-a.e. for (x,y) € 8§,

where A4 is the set of (o, f) in R? satisfying
j exp(—(as + Bt))do (s, t) =1, o (2.2)
R2 '

and < is a positive regular measure on 4.

arithmetic. We let 8’ = supp o, and ,

D = (R, x {0}) U ({0} X Ry).
By Proposition 2.3 and Example 2.4, we conclude that any nonnegative
solution f is of the form
f(x, 9) = py(x — M exp (), x=2y=0;
| = po(y — x) exp (~ax), y=xz=20,

where J exp (—at) do(t) =1, and p,, p. are nonnegative functions on R..
4 ,

. ExaMmPLE 2.7. Let S = R2,.8; = {0} X R, §p = (1, ) X Ry, and let
s be such that supp o = S; U Sp (Davies and Shanbhag [2]). In this case
S(s) does not have the component-generating propery in R?2 ., Note that
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Ey(o) consists of exponential functions of the form ce—(sx+8), x,y)es,
with

[ exp (=8 do(0, ) + f exP, (— (¥ + ) doe Y) = 1,
S1
and E(c) is the union of Eo(c) and the set of functlons g w1th
g(x, y) = ce?’, if x =0,
= (, if x £ 0,

[-o]

where'J’ e* da (0, 1) = 1. We conclude from Theorem 2.1 that a conti- -

d
nuous solution f satisfies

£, 3) = [ oxp (—x + ) di(e ), % 22,5 >0,

where 4 is the set of («, B) satisfying (2.2), and v is a posmve measure on
A. A further inspection shows that f has the representatlon

S0, y) = ce” + I exp (—(ax + By)) du(a, B), ¥ (x, ) € S(o).
4. .

3. APPLICATIONS TO CHARACTERIZATION PROBLEMS

Randomized Lack of Memory Property

Let X denote the life- time of a system. X is said to have the lack of

memory property if _
: P(X>x+t/Xv> t)y=PX>x), t,x;O.

A more gelleral model is that ' \
PX>x+TIX>T)=PX>1t), % x=0,

where T 2= 0 is a random checking time. We call this the randomzzed lack
of memory property (rLMP). It is known that if T is nonarithmetic, then
X has rLMP if and only if X has an exponential dlstrlbunon

For the bivariate case, we have two extensions:

THeOREM 3.1. Suppose (X, Y), and (7, Ts) are nonnegatlve random
vectors, and satisfy :

P(X>x+T1,Y>y+T2/X> T, Y>T) = PX>x, Y>y)
¥ (x,y) 2 0.

If the subsemigroup geﬁefated by the essential range of (T,, T,) has the
_component-generating property in R2, then the distribution of (X, ¥)is a
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mixture of exponential dlStrlbutIODS with survival functions (see the: deﬁm- :

tion below) of the form | L
exp (—(ux +£)), X, .20,

~where o, p = 0 satlsfy | ’

f exp (—(as + Bt)) d0' (s, t) =1,
R2 ‘
and do (s, t) {P(X> s, Y > t)} 1 dF(Tl Tg)(S, t).

b
!

THE_OREM 3.2. Suppose (X Y) T are nonnegatlve random varlables'
satisfying . S
PX>x+T,Y>y+TX, Y>T)= P(X>x Y>y),

. | wi(x ) =2
If T"is nonarithmetic, then the survival function

| G(x,y) = P(X > x, Y > )
is of the form ,
G(x, 3) = Gy(x —y) e, x =
L= Gy —x)emx, y =

ks

y =0
x =0,

vV WV

where f e~ do(t) = 1, do(t) = {P(X > s, Y > )}t dFr(t), and Gy, Gy
J ;

are the survival functions of X and Y, respectively.

Notice that if X and Y in Theorem 3.2 are exponentially dlstubuted :
then (X, Y) has the bivariate “exponential distribution of Marshall and
Olkin. Both Theorem 3.1 and 3 2 can be ecasily extended to the multivari-
ate case, which discussion will appear elsewhere. We remark that the mul-
tivariate analog of Theorem 3.1 generalizes a result in Davies and Shan-
bhag [2], where the essential range of the random checking time (77, Tz)
is assumed to be R2 . ‘ , _

Genera]ized Stable Laws

‘A random variable X is said to obey a genmeralized stable law if its
characteristic function ¢ satisfies

¢(t) H $Bs1), ¥ teR,

Where ] B; l < 1 and v; > 0. The bivariate analog is o o
?S(tv ta) = H ?5(@](% OV, ¥t ta e R, (3.1
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If?.we let - R - : . .

L W) =19 ) [ and Gx, ») = — log ¥(e, &),

then the equation (3.1) implies that e
G52 = [ G+ 1,7+ 1) dott),

o v 0 o o
withsupp o = {—log [B; | :j=1,2, ...} and o{— log | Bil}=1,>0.
It follows that (provided that o is nonarithmetic) - o

- \Fv(vtl’. tz) =exp{—¢ |l — éz | 2 | —| tlt.z:]“-/?*h(-tb 72)},
where « is determined by £ v;|pB;|+=1, and k is a continuous function
j
which satisfies h(sty, sty) = h(#y, t5) for all s = 0. Hence we have
THEOREM 3.3. Suppose that {—1log | B;|:j='1,2, ...} is nonarith-
metic with at least one B; > 0. If the characteristic function ¢ of a non-

degenerate random vector X satisfies equation (3.1), then 0<ag 2,
and '

(1) If « = 2, then X has a bivariate normal distribution,
(2) If 1 < a < 2,then

¢(ty, 1) = exp {— eyl ty o — Cy | 2 [« — | 12, l“/-é

h(t,, ta) + i(myt, + m,t,)},
where my, my +# 0, only if 3 y,;B‘j =1, '
i

(3) If 0 < a <1, then | .

&(t,, t3) = exp{—oc, |1 J« — Cy | 2y | —-, 4L, I"‘/2f.h(l‘1, 5)}.

Theorem 3.3 has been generalized to multivariate distributions in Gupta,
Nyugen and Zeng [4], '

REFERENCES

1. Choquet, G. and Deny,' J. (1960): Sur I’equation de convolution p= W *o. -

C.R. Acad. Sci. Paris, t. 250, 799-801.

2. Davies, P.L. and Shanbhag, D.N. (1987): A generalization of a theorem of -

Deny with application in characterization theory, Quart. J. Math. Oxford (2),
38, 13-34. : : '
3. Deny, J. (1960): Sur I’equation de convolution w=pn % g. Semiin. Theor.
Potent. M, Brelot, Fac. Sci. Paris, 4 ann. ‘
4. Gupta, A.K., Nguyen, T.T. and Zeng, W.B. (1989); Characterization of multiva-
riate distributions through a functional equation of their characteristic func-
tions (preprint), A




‘494 A CONVOLUTION EQUATION AND APPLICATIONS
Lau, K.S. and Rao, C.R. (1982): Integrated Cauchy functional equation and
characterization of the exponential law, Sankhyd A 44, 72-90.

6. Lau, K.S. and Zeng, W.B. (1989): Embeddmg of locally compact metrlzable

' semigroups (preprint).
Lau, K.S. and Zeng, W.B. (1990): The convolutlon equation of Choquet and

Deny on semlgroups, studia Math 97, 45-65,

5.

e

7.

8. Ramachandran B. (1982): On the equation  f(x) = J f(x+y)dp (y),

Sankhya A 44 364-371.
Ramachandran, B. and Lau, K.S. (1992): Punctlonal equatxon in probability

9.
theory, Academic Press (to appear).

g 3530

Ty,




